Conditional Entropy 유도

Tags:

2023.09.24


  정보이론 기초부분의 Conditional Entropy 부분에 대한 증명을 보던 중 1학기 확통 시간에 배웠던 Law of total expectation이 떠올라서 유도를 했다.

H(YX)=EX[H(Yx)]=EX[EY(I(yx))]=xX[p(x)(EY[I(yx)])]=xX[p(x)yYp(yx)log(p(yx))]=xX[p(x)yYp(yx)(log(p(x,y))log(p(x)))]=xX[p(x){yYp(yx)log(p(x,y))+yYp(yx)log(p(x))}]=xX[p(x){yYp(x,y)p(x)log(p(x,y))+log(p(x))yYp(yx)}]=xX[yYp(x,y)log(p(x,y))]xX[p(x)log(p(x))]=H(X,Y)H(Y)\begin{aligned} H(Y|X) & = E_{X}[H(Y|x)] =E_{X}[E_{Y}(I(y|x))] \\ & = \sum_{x\in X}^{}[p(x)(E_{Y}[I(y|x)])] \\ & = \sum_{x\in X}^{}[p(x)\sum_{y\in Y}^{}-p(y|x)log(p(y|x))] \\ & = \sum_{x\in X}^{}[p(x)\sum_{y\in Y}^{}-p(y|x)(log(p(x,y))-log(p(x)))] \\ & = \sum_{x\in X}^{}[p(x)\left\{ \sum_{y\in Y}^{}-p(y|x)log(p(x,y))+\sum_{y\in Y}^{}p(y|x)log(p(x)) \right\}] \\ & =\sum_{x\in X}^{}[p(x)\left\{ \sum_{y\in Y}^{}-\frac{p(x,y)}{p(x)}log(p(x,y))+log(p(x))\sum_{y\in Y}^{}p(y|x) \right\} ] \\ & = \sum_{x\in X}^{}[-\sum_{y\in Y}^{}p(x,y)log(p(x,y)) ] - \sum_{x\in X}^{}[-p(x)log(p(x)) ] \\ & = H(X,Y) - H(Y) \end{aligned}